Dynamic Tempered Transitions for Exploring Multimodal Posterior Distributions

نویسندگان

  • Jeff Gill
  • George Casella
چکیده

Multimodal, high-dimension posterior distributions are well known to cause mixing problems for standard Markov chain Monte Carlo (MCMC) procedures; unfortunately such functional forms readily occur in empirical political science. This is a particularly important problem in applied Bayesian work because inferences are made from finite intervals of the Markov chain path. To address this issue, we develop and apply a new MCMC algorithm based on tempered transitions of simulated annealing, adding a dynamic element that allows the chain to self-tune its annealing schedule in response to current posterior features. This important feature prevents the Markov chain from getting trapped in minor modal areas for long periods of time. The algorithm is applied to a probabilistic spatial model of voting in which the objective function of interest is the candidate’s expected return. We first show that such models can lead to complex target forms and then demonstrate that the dynamic algorithm easily handles even large problems of this kind.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling from multimodal distributions using tempered transitions

I present a new Markov chain sampling method appropriate for distributions with isolated modes. Like the recently-developed method of \simulated tempering", the \tempered transition" method uses a series of distributions that interpolate between the distribution of interest and a distribution for which sampling is easier. The new method has the advantage that it does not require approximate val...

متن کامل

Tuning tempered transitions

The method of tempered transitions was proposed by Neal (1996) for tackling the difficulties arising when using Markov chain Monte Carlo to sample from multimodal distributions. In common with methods such as simulated tempering and Metropolis-coupled MCMC, the key idea is to utilise a series of successively easier to sample distributions to improve movement around the state space. Tempered tra...

متن کامل

Learning in Markov Random Fields using Tempered Transitions

Markov random fields (MRF’s), or undirected graphical models, provide a powerful framework for modeling complex dependencies among random variables. Maximum likelihood learning in MRF’s is hard due to the presence of the global normalizing constant. In this paper we consider a class of stochastic approximation algorithms of the Robbins-Monro type that use Markov chain Monte Carlo to do approxim...

متن کامل

Stochastic Gradient Monomial Gamma Sampler

Recent advances in stochastic gradient techniques have made it possible to estimate posterior distributions from large datasets via Markov Chain Monte Carlo (MCMC). However, when the target posterior is multimodal, mixing performance is often poor. This results in inadequate exploration of the posterior distribution. A framework is proposed to improve the sampling efficiency of stochastic gradi...

متن کامل

Computational and Inferential Diiculties with Mixture Posterior Distributions 1

This paper deals with both exploration and interpretation problems related to posterior distributions for mixture models. The speciication of mixture posterior distributions means that the presence of k! modes is known immediately. Standard Markov chain Monte Carlo techniques usually have diiculties with well-separated modes such as occur here; the Markov chain Monte Carlo sampler stays within ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004